状态空间法
State space model is in time domain and can describe both SISO and MIMO systems.
Some advantages:
- Numerically simple, easy for computers.
- Transfer function only deals with input/output behavior, while state-space can assess internal features of the system.
- MIMO and system coupling
Controller Design:
- Full-state feedback (pole placement)
- Observer / estimator design: estimating the system state from available measurements.
- Dynamic output feedback: combines these two with provable guarantees on stability and performance.
Overall, state-space design process is more systematic than classical control design.
能控性 (Controllability)
(待补充)
能观性 (Observability)
(待补充)
控制增益计算
For a SISO system, the transfer function can take the forms: and .
The new input can be calculated as:
This resulted in a new state equation for the closed-loop system:
LQR控制器的MATLAB代码
A = sys_d.a;
B = sys_d.b;
C = sys_d.c;
D = sys_d.d;
Q = C'*C % state-cost matrix
R = 1; % control-cost
[K] = dlqr(A,B,Q,R) % control gain matrix
Ac = [(A-B*K)];
Bc = [B];
Cc = [C];
Dc = [D];
states = {'x' 'x_dot' 'phi' 'phi_dot'};
inputs = {'r'};
outputs = {'x'; 'phi'};
sys_cl = ss(Ac,Bc,Cc,Dc,Ts,'statename',states,'inputname',inputs,'outputname',outputs);
t = 0:0.01:5;
r =0.2*ones(size(t));
[y,t,x]=lsim(sys_cl,r,t);
[AX,H1,H2] = plotyy(t,y(:,1),t,y(:,2),'plot');
set(get(AX(1),'Ylabel'),'String','cart position (m)')
set(get(AX(2),'Ylabel'),'String','pendulum angle (radians)')
title('Step Response with Digital LQR Control')